# metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Yu Liu,<sup>a</sup> Jian-Ming Gu<sup>b</sup> and Duan-Jun Xu<sup>a</sup>\*

<sup>a</sup>Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China, and <sup>b</sup>Central Laboratory, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

#### Key indicators

Single-crystal X-ray study T = 298 KMean  $\sigma(C-C) = 0.003 \text{ Å}$  R factor = 0.028 wR factor = 0.074 Data-to-parameter ratio = 15.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

# catena-Poly[[diaquabis(1*H*-benzimidazole- $\kappa N^3$ )nickel(II)]- $\mu$ -succinato- $\kappa^2 O:O'$ ]

The crystal structure of the title compound,  $[Ni(C_4H_4O_4)-(C_7H_6N_2)_2(H_2O)_2]_n$ , consists of a polymeric Ni<sup>II</sup> complex bridged by succinate dianions. The Ni atom is located at a crystallographic inversion center. Both carboxyl groups of the succinate coordinate, in monodentate fashion, to the neighboring Ni<sup>II</sup> atoms to form one-dimensional chains, and the chains link to each other *via* hydrogen bonds between the benzimidazole and carboxyl group to form a two-dimensional supramolecular structure. The overlapped arrangement of parallel benzimidazole ligands, with a separation of 3.350 (3) Å, suggests the existence of  $\pi$ - $\pi$ -stacking interactions between adjacent chains.

# Comment

A series of transition metal complexes bridged by dicarboxylate, such as fumarate, succinate, *etc.*, has been prepared in the laboratory. Their crystal structures show versatile coordination modes of the carboxyl groups (Chen *et al.*, 2003). As part of this research, the structure of the title nickel(II) complex, (I), bridged by succinate has been determined by X-ray diffraction methods.



The crystal structure consists of polymeric Ni<sup>II</sup> complex molecules. The coordination environment around the Ni<sup>II</sup> atom is illustrated in Fig. 1. The Ni<sup>II</sup> atom is located at a crystallographic inversion center. Together with two water molecules, two O atoms from different succinate ligands and two imidazole N atoms coordinate the Ni<sup>II</sup> atom in an octahedral geometry (see Table 1). The carboxyl groups of the succinate coordinate in monodentate fashion; the uncoordinated carboxyl O atoms form hydrogen bonds with the neighboring coordinated water.

The bridging succinate groups also lie on inversion centers. The planar carbon skeleton makes a dihedral angle of  $56.6 (2)^{\circ}$  with each carboxyl group. Carboxyl groups of the succinate coordinate to neighboring Ni<sup>II</sup> atoms to form onedimensional polymeric chains. Adjacent chains link to each other *via* hydrogen bonds between benzimidazole N and carboxyl O atoms, forming the two-dimensional supramolecular structure shown in Fig. 2 and detailed in Table 2.

 $\odot$  2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Received 24 April 2003 Accepted 6 May 2003 Online 16 May 2003



#### Figure 1

The molecular structure of (I), with 50% probability displacement ellipsoids. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, -y, 1 - z.]



The molecular packing; dashed lines denote hydrogen bonds.

An overlapped arrangement of parallel benzimidazole ligands is observed in the crystal structure. Neighboring benzimidazole ligands, related by the symmetry transformation (-x, 1-y, -z), are separated by 3.350 (3) Å. These findings suggest the existence of  $\pi$ - $\pi$ -stacking interactions between adjacent polymeric chains.

## **Experimental**

NiCl<sub>2</sub>·6H<sub>2</sub>O (0.48 g, 2 mmol) was added to an aqueous solution (10 ml) containing succinic acid (0.24 g, 2 mmol) and NaOH (0.16 g, 4 mmol). After the mixture was refluxed for 30 min, an ethanol solution (10 ml) of benzimidazole (0.24 g, 2 mmol) was added to the above solution with continuous stirring. The solution was refluxed for 3 h, until the color changed to pale green. The reaction mixture was cooled to room temperature and filtered. Pale green single crystals were obtained from the filtrate after one week.

### Crystal data

| $[Ni(C_4H_4O_4)(C_7H_6N_2)_2(H_2O)_2]$ | Z = 1                                     |
|----------------------------------------|-------------------------------------------|
| $M_r = 447.08$                         | $D_x = 1.646 \text{ Mg m}^{-3}$           |
| Triclinic, $P\overline{1}$             | Mo $K\alpha$ radiation                    |
| $a = 7.0244 (7) \text{ Å}_{-}$         | Cell parameters from 2206                 |
| $b = 8.5982 (11) \text{\AA}$           | reflections                               |
| c = 8.7399(5)  Å                       | $\theta = 2.6-27.4^{\circ}$               |
| $\alpha = 100.248 \ (6)^{\circ}$       | $\mu = 1.12 \text{ mm}^{-1}$              |
| $\beta = 111.981 \ (7)^{\circ}$        | T = 298 (2)  K                            |
| $\gamma = 104.734 \ (9)^{\circ}$       | Prism, green                              |
| $V = 450.91 (9) \text{ Å}^3$           | $0.39 \times 0.19 \times 0.11 \text{ mm}$ |

#### Data collection

| Rigaku R-AXIS RAPID<br>diffractometer<br>ω scans | 2036 independent reflections<br>1913 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.015$ |
|--------------------------------------------------|---------------------------------------------------------------------------------------------|
| Absorption correction: multi-scan                | $\theta_{\rm max} = 27.5^{\circ}$                                                           |
| (ABSCOR; Higashi, 1995)                          | $h = -8 \rightarrow 9$                                                                      |
| $T_{\min} = 0.64, \ T_{\max} = 0.88$             | $k = -11 \rightarrow 11$                                                                    |
| 4252 measured reflections                        | $l = -11 \rightarrow 11$                                                                    |
| Refinement                                       |                                                                                             |
| Refinement on $F^2$                              | $w = 1/[\sigma^2(F_o^2) + (0.0375P)^2]$                                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.028$                  | + 0.2892P]                                                                                  |
| $wR(F^2) = 0.074$                                | where $P = (F_o^2 + 2F_c^2)/3$                                                              |
| S = 1.11                                         | $(\Delta/\sigma)_{\rm max} < 0.001$                                                         |
| 2036 reflections                                 | $\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$                                   |
| 133 parameters                                   | $\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$                                  |
| H-atom parameters constrained                    |                                                                                             |

#### Table 1

Selected geometric parameters (Å).

| Ni-O1  | 2.0733 (12) | O2-C11                | 1.274 (2) |
|--------|-------------|-----------------------|-----------|
| Ni-N3  | 2.0774 (14) | C11-C12               | 1.519 (2) |
| Ni-O3  | 2.1028 (13) | C12-C12 <sup>ii</sup> | 1.523 (3) |
| D1-C11 | 1.255 (2)   |                       |           |

Symmetry code: (ii) -x, -y, 1-z.

# Table 2

| нуаго | gen-bond | ing geo | ometry ( | (A, ') | • |
|-------|----------|---------|----------|--------|---|
|       |          |         |          |        |   |

| $D - H \cdots A$                                                 | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|
| $N1-H1\cdotsO2^{iii}$ $O3-H13\cdotsO2^{iv}$ $O3-H23\cdotsO2^{i}$ | 0.86 | 2.06                    | 2.871 (2)    | 156                                  |
|                                                                  | 0.85 | 2.09                    | 2.878 (2)    | 153                                  |
|                                                                  | 0.86 | 2.24                    | 2.688 (2)    | 112                                  |

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (iii) x, y, z - 1; (iv) 1 + x, y, z.

The H atoms on C atoms were placed in calculated positions, with C-H = 0.93-0.97 Å, and included in the final cycles of refinement as riding, with  $U_{iso}(H) = 1.2U_{eq}$  of the carrier atoms. H atoms of water were placed in calculation positions (Nardelli, 1993), and were included in the final cycles of refinement with fixed coordinates and isotropic displacement parameters of 0.08  $Å^2$ .

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This project was supported by the National Natural Science Foundation of China (Nos. 29973036 and 20240430654).

## References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Chen, Z., Xu, D., Li, Z., Wu, J. & Chiang, M. Y. (2003). J. Coord. Chem. 56, 253-259.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Nardelli, M. (1993). J. Appl. Cryst. **32**, 563–571.

Rigaku Corporation (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC & Rigaku (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381–5209, USA, and Rigaku Corporation, Akishima, Tokyo, Japan.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.